Covalent chemical functionalization of semiconducting layered chalcogenide nanosheets†

Duo O. Li, a Matthew S. Gilliam, b,c Ximo S. Chu, a Ahmed Yousaf, b,c Yuqi Guo, a Alexander A. Green b,c and Qing Hua Wang a,*

Layered chalcogenides are a diverse class of crystalline materials that consist of various covalently bound building blocks held together by van der Waals forces. Among these materials are the transition metal dichalcogenides (TMDCs) which can be exfoliated into two-dimensional (2D) nanosheets, and the pnictogen chalcogenides (PCs) which can be exfoliated into one-dimensional (1D) nanoribbons and 2D nanosheets. These materials have recently been extensively studied for their intriguing electronic, optical, and chemical properties. The chemical functionalization of 1D and 2D nanomaterials is an important enabling step for tuning their properties and forming interfaces with other materials and structures. However, broadly applicable and versatile chemical tools that can effectively functionalize a wide range of layered chalcogenide compositions without disruptive pre-treatments need further advancement. Here we show the covalent functionalization of nanosheets of the representative TMDC materials MoS2, WS2, MoSe2, and WSe2, and of the representative PC materials Sb2S3 and Bi2S3 using aryl diazonium salts. Covalent bonds are formed on the basal planes of both mechanically exfoliated and liquid phase dispersed nanosheets, and the chemical and morphological changes upon functionalization are verified using a combination of spectroscopic and microscopic techniques. This work builds on previous demonstrations of diazonium functionalization of 2D materials like MoS2, and expands it to five additional compositions. Thus, the aryl diazonium chemistry is shown to be a versatile and powerful approach to covalent functionalization of the 2D nanosheets of a diverse set of semiconducting layered chalcogenide materials.

Introduction

Over the past decade, the study of 2D materials that can be derived from layered bulk materials with in-plane covalent bonding and out-of-plane van der Waals (vdW) bonding has been intensely pursued due to their unique electronic, optical, mechanical, and chemical properties, and in particular the layered chalcogen materials have attracted significant attention. One important class of such materials is the transition metal dichalcogenides (TMDCs), which have the general...
formula MX₂, where M is a transition metal (M = Mo, W, Nb, Ta, etc.) and X is a chalcogen (X = S, Se, or Te). Members of the TMDC family include metallic, semiconducting, superconducting, charge density wave, and topological materials, and have recently been the focus of intense research efforts due to the unique properties that arise in their 2D forms.¹⁻⁴ They have been used in a wide range of applications in electronics, sensing, and energy.⁵⁻⁷ The crystal structure of the MX₂ materials including the semiconductors MoS₂, MoSe₂, WSe₂, and WS₂, which belong to the P6₃/mmc space group (No. 194) in their most common phases, is shown in Fig. 1a and b. These materials have covalently bound layers with either S or Se atoms on the outer planes that are held in stacks by vdW forces.

The pnictogen chalcogenides (PCs) are another class of layered chalcogens, with the general formula Pn₂X₃, where Pn is a group 15 pnictogen (Pn = As, Sb, and Bi). While the broader group includes semiconductors, topological insulators, and thermoelectrics, here in this paper we focus on the semiconductors Sb₂S₃ and Bi₂S₃. These materials have been grown in thin films,⁸ nanowires and nanorods,⁹⁻¹⁴ and exfoliated into 1D nanoribbons and 2D nanosheets.¹⁵⁻¹⁷ Examples of applications for Bi₂S₃ and Sb₂S₃ include solar cells, batteries, and catalysts.⁹,¹⁰,¹⁷⁻²⁰ The crystal structure of the Pn₂X₃ materials including Sb₂S₃ (antimony trisulfide or antimonite or stibnite) and Bi₂S₃ (bismuth(w) sulfide or bismuthinite), which belong to the Pnma space group (No. 62), are shown in Fig. 1c and d.

![Fig. 1](image-url) Layered chalcogenide materials and diazonium functionalization scheme. (a) and (b) Crystal structure of MX₂ materials in side and top views (yellow atoms: X; purple atoms: M). (c) and (d) Crystal structures of Pn₂X₃ materials in side and top views (yellow atoms: X; brown atoms: Pc). (e)–(g) Reaction scheme for covalent functionalization with aryldiazonium salts: (e) the functionalization is done using 4-nitrobenzenediazonium tetrafluoroborate (4-NBD), which forms a radical upon charge transfer from the substrate; the radical forms a covalent bond with the S or Se atom at the surface; and (f) and (g) there is a covalently bonded nitrophenyl (NP) group on the surface as a result.
The chemical functionalization of nanomaterials is used to tune their physical properties, control their interfacial interactions with other materials, and to protect them from deleterious environments. In general, 2D materials like graphene can be functionalized by both covalent and noncovalent methods. For example, the surface functionalization of TMDCs can allow them to have improved biosensing capabilities by introducing biophilic moieties to bind particular biomolecules, better antimicrobial activity, sorption of contaminants from water, and doping of the semiconducting material.

Recently, we have demonstrated the direct covalent functionalization of semiconducting 2D MoS2 by aryl diazonium salts, which does not require any pre-treatment or phase conversion of the semiconducting material, and we have also shown the detailed reaction kinetics of this functionalization, which depends on the energetically homogeneous surface due to defects and the interaction between the attached NP groups on the surface and the free 4-NBD molecules in solution. Aryl diazonium functionalization has previously been applied to other materials such as graphene, black phosphorus, and carbon nanotubes. The TMDCs, in particular MoS2, have been the focus of several surface functionalization studies, and a variety of approaches and chemical schemes have been used. Many of these methods require lithium-based phase conversion or the formation of defects. There have also seen some examples of surface functionalization for the PCs, but there are fewer such methods for PCs than for TMDCs to the best of our knowledge. Thus, there is a need for a general and broadly applicable method to functionalize different layered chalcogenides, and in particular to expand them to the PCs.

In this paper, we expand this covalent functionalization with aryl diazonium salts to several other members of the TMDC and PC families beyond MoS2 to further extend the applicability and broad utility of this chemistry, namely to functionalize MoSe2, WSe2, Bi2S3, and Sb2S3. We prepare and functionalize samples of these materials using mechanical exfoliation, liquid phase dispersion, and chemical vapor deposition (CVD) techniques. Using vibrational and absorbance spectroscopies, we show the formation of chemical bonds and attachment of functional groups to the TMDC and PC nanosheets. Using atomic force microscopy (AFM), we show the spatial distribution of NP groups across the TMDC and PC surfaces with functionalization. This work shows that the covalent functionalization using aryl diazonium salts can indeed be applied to many related layered chalcogen materials, thus greatly expanding the scope of utility of the chemical scheme, and that it can open the door to further modifications of these materials. Our generalized approach for both TMDCs and PCs here uses diazonium chemistry to produce surface-modified nanomaterials that opens avenues for potential applications in biosensing, antimicrobial, therapeutic, environmental, energy, and optoelectronic applications. The wider literature on the diazonium functionalization of 2D materials and carbon nanomaterials, which has demonstrated changes to properties such as the electronic and transport, shifts in optical emission, and the covalent attachment of other materials like proteins, polymers, and quantum dots, can be brought to inform future work on TMDCs and PCs.

Experimental

Materials

Tungsten(IV) sulfide (WS2, powder, 99%, 2 μm), molybdenum(IV) selenide (MoSe2, ~325 mesh, 99.9% trace metals basis), molybdenum(IV) sulfide (MoS2, powder), bismuth(III) sulfide (Bi2S3, 99%), antimony(III) sulfide (Sb2S3, powder), 4-nitrobenzenediazonium tetrafluoroborate (4-NBD, 97%), sodium dodecyl sulfate (SDS, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% GC), molybdenum(Ⅵ) oxide (MoO3), and selenium (Se powder) were purchased from Sigma-Aldrich. Tungsten(IV) selenide (WSe2, 10–20 μm powder, 99.8% metals basis) and sulfur (S powder) were purchased from Alfa Aesar. Single crystals of MoS2 and WS2 were purchased from SPI Supplies, MoSe2 from MTI Corporation, and WSe2 from Nanosurf.

Mechanical exfoliation

Si/SiO2 (300 nm) substrates were ultrasonically cleaned in acetone and isopropanol baths sequentially and then blown dry with ultrahigh purity nitrogen gas. The TMDC flakes were prepared by mechanical exfoliation from single crystals, while the PC flakes were prepared by using the same method from bulk powders.

Liquid phase exfoliation

Liquid exfoliation for TMDCs and PCs used bulk powder source materials mixed in 1% wt/vol SDS aqueous solutions and subjected to tip sonication (Branson Digital Sonifier, 450D) with 3 mm tip for 2–4 hours at 30–50% amplitude. The mixtures were then centrifuged for 5–30 min at 3234 to 5000 RCF and the supernatant containing the dispersed nanosheets were extracted and used for further experiments. The masses, sonication times and amplitudes, and centrifugation times and speeds for each material are as follows: MoS2 according to methods in Chu et al.; WS2: 5 g in 110 mL SDS solution, 2 hours at 50% amplitude, 30 minutes at 3234 RCF; MoSe2 and WSe2: 0.65 g in 20 mL SDS solution, 2 hours at 30% amplitude; Bi2S3 and Sb2S3: 1.3 g each in 20 mL SDS solution, 4 hours at 35% amplitude, 5 minutes at 5000 RCF.

Functionalization of mechanically exfoliated samples

The mechanically exfoliated flakes of TMDCs and PCs deposited on Si/SiO2 were immersed in 10 mM of 4-nitrobenzenediazonium tetrafluoroborate (4-NBD) (Sigma Aldrich) aqueous solutions at 35 °C with stirring at 125 rpm. The reaction was conducted in a beaker sealed by parafilm in
the dark. Then the samples were removed from the solution and thoroughly rinsed with ultrapure water and blown dry with ultrahigh purity nitrogen gas.

Functionalization of liquid phase exfoliated samples

Nanosheet dispersions of each material were mixed with 4-NBD powder such that the concentration of 4-NBD was 0.25% wt/vol with respect to the nanosheet dispersion volumes. The mixtures were then subjected to tip sonication at 20% amplitude for 2 hours for MoS2, WS2, MoSe2, and WSe2 and for 4 hours for Bi2S3 and Sb2S3. Control samples were prepared by subjecting the nanosheet dispersions to the same sonication treatment but without any 4-NBD.

Raman spectroscopy

Raman spectroscopy and optical microscopy of mechanically exfoliated nanosheets of TMDCs and PCs were conducted on a WITec alpha300R confocal Raman microscope system with a 532 nm excitation laser and 100× objective lens with ∼1 μm laser spot size. The laser power was kept below 1 mW to minimize damage to the samples. Spectra were obtained using the 1800 g mm⁻¹ grating and 5 s acquisition time.

Atomic force microscopy (AFM)

AFM images of mechanically exfoliated nanosheets were taken after different reaction times using a Multimode V system (Bruker Inc.) in ScanAsyst mode with ScanAsyst-Air tips (tip diameter 2 nm). AFM images were processed using Gwyddion.⁵⁰

Fourier transform infrared spectroscopy (FTIR)

Nanosheet dispersions of all the TMDCs and PCs in both functionalized and unfunctionalized states were used to make thin films by vacuum filtration onto hydrophilic PTFE membranes (0.1 μm pore size, OMNIPORE, from Millipore) followed by washing with water and vacuum drying between 60 and 90 °C overnight in a vacuum oven. Transmittance FTIR measurements were performed on the vacuum filtered films using a Nicolet 6700 FTIR with 64 scans taken for each sample and 128 scans taken for a background measurement in air. Within the OMNIC software used to collect the spectra, transmittance measurements were converted to absorbance measurements and a baseline correction was applied to each spectrum. The absorbance spectra were then normalized to a peak corresponding to PTFE that occurs at around 1150 cm⁻¹ and plotted using MATLAB.

UV-vis absorbance spectroscopy (UV-vis)

Nanosheet dispersions were added to plastic cuvettes and their absorbance spectra were measured using a Jasco V-670 Spectrophotometer with 1% SDS solution as a baseline and reference.

Transmission electron microscopy (TEM)

Nanosheet dispersions were dropped onto 400 mesh Cu lacey carbon grids (01824 from Ted Pella) and imaged using a Philips CM 12 TEM operating at 80 kV.

Chemical vapor deposition (CVD)

The MoS₂ and MoSe₂ samples for XPS analysis were prepared using chemical vapor deposition (CVD) growth in a 1-inch quartz tube in a tube furnace (ThermoFisher Scientific). The target substrates were SiO₂/Si wafers held above the MoO₃ precursors. During the growth of MoS₂, 20 mg of MoO₃ was heated up to 650 °C in 40 min and held for 30 min. 100 mg of S (Alfa Aesar) was separately heated up to 150 °C at an upstream location. The system was in vacuum with 300 sccm of Ar flow. During the growth of MoSe₂, the growth was conducted in atmospheric pressure. The system was purged with 500 sccm of Ar flow for 30 min before heating. 30 mg of MoO₃ was heated up to 150 °C and held for 30 min followed by heating up to 950 °C in 15 min and holding for 10 min. 200 mg of Se (Sigma-Aldrich) was separately heated up to 200 °C at an upstream location.

X-ray photoelectron spectroscopy (XPS)

XPS analysis was conducted using a Vacuum Generators 220i-XL system with monochromated Al Kα radiation (hν = 1486.6 eV). The pressure in the analysis chamber was ∼10⁻⁹ torr and lower and the X-ray spot size was ∼400 μm. The spectra were analyzed using the CasaXPS software package.

Results & discussion

Chemical functionalization by aryl diazonium salts

The 2D nanosheets of TMDCs and PCs were prepared by mechanical exfoliation onto SiO₂/Si wafer substrates, by liquid phase exfoliation in aqueous surfactant solutions by tip sonication from powders, and by chemical vapor deposition (CVD) (see Experimental section for more details). The nanosheets were then covalently functionalized in aqueous solutions of the aryl diazonium salt 4-nitrobenzenediazonium tetrafluoroborate (4-NBD). This molecule, along with other similar derivatives, has been previously used to functionalize graphene⁴⁴,⁵¹ and MoS₂.³¹,³² By choosing a molecule that has been used before, we can more directly compare the results for different substrate nanomaterials without concern over variables in reactivity or morphology that may occur in different diazonium derivatives.⁵² The functionalization reaction proceeds as illustrated in the steps in Fig. 1e–g, resulting in covalent C–S and C–Se bonds on the basal planes with nitrophenyl (NP) groups protruding from the surface. This reaction for MoS₂ alone was studied in greater detail in our previous work in Chu et al.³¹ and Li et al.,³² which confirmed the reaction mechanism and kinetics for MoS₂. Briefly, the reaction involves the transfer of charge from the target substrate material (MoS₂ in the case of the earlier work, and other TMDCs and PCs in the present work) to the aryl diazonium
group, which forms an aryl radical upon loss of a nitrogen molecule, which then forms a covalent bond with the basal plane. Our earlier work showed that the reaction mechanism relies on the presence of a very small concentration of sulfur vacancies in MoS$_2$, at which the local charge density is increased in order to initiate the reaction, which then progresses across the surface in a chain-like morphology due to the increased reactivity surrounding covalently functionalized sites. Thus, only a very low number of initial defects was needed for the entire basal plane to be functionalized.

The mechanically exfoliated samples in the current study enabled careful imaging by AFM to observe the formation of covalently attached chemical groups on the nanosheets' surfaces with high spatial resolution, while the liquid phase exfoliated materials provided larger quantities of nanosheets that were suitable for ensemble measurements. Both types of samples and measurements are important for characterizing the overall functionalization of this collection of TMDC and PC layered materials.

Spectral evidence of chemical functionalization

Optical spectroscopy was used to characterize the functionalized and unfunctionalized TMDC and PC materials. For Fourier transform infrared spectroscopy (FTIR), films of nanosheets dispersed by liquid phase exfoliation were formed by vacuum filtration onto PTFE membranes (see Experimental section for more details). For UV-visible absorbance spectroscopy, the nanosheet dispersions were directly measured in their liquid state. For Raman spectroscopy, mechanically exfoliated flakes were used.

The FTIR results for the TMDCs are shown in Fig. 2a. The spectra for all the functionalized nanosheets show features around 1344 cm$^{-1}$ and 1514 cm$^{-1}$ corresponding to the N-O stretching modes, which indicates the presence of the NO$_2$ group from 4-NBD. There is also a peak at \sim1600 cm$^{-1}$ which can be associated with the C=C stretch within the benzene group of an attached nitrophenyl group resulting from the 4-NBD molecule. There is also a peak at 697 cm$^{-1}$ corresponding to the C=S bond, although it is less prominent in some of the materials, possibly due to variations in film thickness. The C-Se bond is expected to occur at about \sim640 cm$^{-1}$, but that is a busy part of the spectrum for MoSe$_2$, and is too weak to be clear for WSe$_2$ (although the N–O peaks are also weak in WSe$_2$). The FTIR spectra for the PCs are shown in Fig. 2b. The same peaks for N-O stretching modes and the C=C stretch can clearly be seen in the 4-NBD treated PC samples, which also suggests the successful functionalization of PC materials. The presence of the C=S peak also indicates formation of covalent bonds on the PC surfaces. All these relevant peaks indicating successful functionalization are indicated by arrows.

Raman spectroscopy was conducted to verify that no significant structural change or damage occurs due to the
4-NBD functionalization reaction. Nanoflakes of TMDCs and PCs were prepared by mechanical exfoliation from bulk crystals and bulk powders, respectively, and deposited onto SiO2/Si wafers, and identified with the optical microscope in the Raman system. As shown in Fig. S1 of the ESI, the E12g in-plane and A1g intra-plane vibrations are detected both before and after functionalization, with no significant changes. The PC materials behave similarly, as shown in Fig. S2 of the ESI, with the characteristic vibrations indicated. This finding is important because it shows that the covalent attachment enables chemical modification to be conducted on the outer basal plane without significant disruption of the basic crystal structure of these materials.

Optical absorbance spectroscopy (UV-vis) was conducted to characterize the changes to the excitonic structure of the TMDC and PC materials. Samples were prepared by diluting dispersions of the nanosheets with 1% SDS solution so that their absorbance values were within the instrument’s detection range (see Experimental section for more details). The UV-vis spectra for the TMDCs in Fig. 3a show the characteristic excitonic peaks for MoS2, WS2, MoSe2 and WSe2 marked with asterisks. After 4-NBD functionalization, there is a slight red shift in these peaks, similar to our observations for MoS2 in our previous work. We attributed these shifts to the electronic coupling of excitons to the aromatic groups that are attached to the TMDC surfaces, which is similar to the excitonic redshift in functionalized CdSe quantum dots, rather than due to an increase in layer thickness, because the surface functionalization prevents proper restacking. The UV-vis spectra for PCs in Fig. 3b are essentially featureless before and after functionalization, as there are no excitonic peaks in this range, but there is some increase in the background below 500 nm due to absorbance of the 4-NBD for the functionalized materials.

X-ray photoelectron spectroscopy (XPS) was conducted for MoSe2 and MoS2 to characterize the surface chemistry, as shown in Fig. S3 of the ESI. After treating the samples with 4-NBD, clear N-O and N-C peaks due to the NO2 groups appear and the intensities of the C peaks due to the benzene ring also increase, all indicative of successful functionalization with nitrophenyl groups. These changes in peaks are only known to appear when there is successful covalent functionalization with a molecule containing the diazonium-group, and are not seen for physisorption with the non-diazonium nitrobenzene molecule. Further discussion of other features in the XPS spectra are found in the ESI.

Morphology of functionalized layered chalcogenide materials

The morphologies of the TMDCs and PCs upon functionalization were characterized by AFM and TEM imaging on mechanically exfoliated and liquid phase exfoliated samples, respectively. AFM imaging is particularly valuable here to directly show the attachment of organic groups on the surfaces of the TMDCs and PCs, and was previously used in our earlier work to elucidate reaction mechanisms and kinetics by analyzing the change in surface coverage on
MoS$_2$. The AFM images of as-exfoliated and functionalized TMDCs are shown in Fig. 4. The thicknesses of the flakes range from 1 to 2 nm and corresponds to atomically thin monolayers and bilayers as shown in Fig. 4a-d. After 5 s reaction in 4-NBD aqueous solution, small protrusions are observed on all the MoS$_2$, MoSe$_2$, W$_2$S$_2$ and WSe$_2$ flakes as shown in Fig. 4e–h. The protrusions can be more clearly seen in the zoomed-in images in Fig. 4i–l, which are from the areas highlighted by squares in Fig. 4e–h. The heights of the protrusions range from 1 to 2 nm which is observed from height profiles shown in Fig. 4m–p. The protrusions can be attributed to the nitrophenyl groups covalently attached onto the surfaces of the TMDCs nanosheets after reaction in 4-NBD aqueous solution. In addition, many of the protrusions are arranged in chain-like features are also observed on all the TMDCs because the attachment of 4-NBD molecules tend to propagate near the previously attached molecules, as found in our previous work on MoS$_2$ in Chu et al. and Li et al. which are also included in Fig. 4. Physisorption is not expected to be a significant contribution because the samples were rinsed thoroughly with ultrapure water, and we previously showed in Chu et al. via a control reaction with a molecule that lacks the diazonium group to form the covalent reaction that very little physisorption occurs.

AFM images of Bi$_2$S$_3$ and Sb$_2$S$_3$ flakes mechanically exfoliated from bulk powders are shown in Fig. 5. The initial unreacted surfaces are shown in Fig. 5a and b, where there are numerous atomic step edges visible, which tend to form
ribbon-like features due to the presence of 1D chains in the crystal structure (see Fig. 1c and d). The same regions of the samples are then shown after functionalization in Fig. 5c–f (the asterisks indicate features that appear both before and after functionalization to help guide the eye), where there are many protrusions uniformly covering the surfaces. The appearance of these protrusions is very similar to those that appear on TMDCs in Fig. 4. There are some clusters observed in Fig. 5f and the height ranges from 1–4 nm which is similar to our earlier results in Li et al.32 Thus, the PC materials and TMDC materials possess similar morphology after functionalization, suggesting consistent attachment of organic groups to the surfaces are 4-NBD treatment.
The morphologies of liquid exfoliated samples before and after 4-NBD functionalization were characterized by TEM imaging. Dispersions of nanosheets of TMDCs and PCs were prepared by dropping them onto lacy carbon grids. The samples that were studied were as-dispersed, treated with 4-NBD solution by sonication, and treated without 4-NBD solution by sonication as controls. Representative TEM images of these nanosheets are shown in Fig. 6. There is relatively little visible change between the functionalized and non-functionalized WS₂ nanosheets as seen in Fig. 6a–c. The nanosheets are still clearly visible as being quite thin, having different layer thicknesses, and being about 50–100 nm across.

For the PCs, a few distinct changes can be seen between functionalized and unfunctionalized samples. For Bi₂S₃, the as-dispersed nanosheets in Fig. 6d have a distribution of large (a few hundred nanometers across) and small flakes, as do the control nanosheets with additional sonication but no 4-NBD exposure (Fig. 6e). When the as-dispersed samples are functionalized with 4-NBD, as shown in Fig. 6f, there are small particles on the surface of the flakes that are observed. We attribute these small particles to similar protrusions that are observed in AFM in Fig. 5e, suggesting the successful attachment of NP groups onto the surface of Bi₂S₃. In the case of Sb₂S₃, the as-dispersed control in Fig. 6g and treated samples without 4-NBD (Fig. 6h) showed similar morphologies, but the 4-NBD treated samples (Fig. 6i) seem to have a coating around them, which may be due to a higher degree of functionalization extending into an oligomer formation or surface polymerization regime for these samples since the functionalization time for these materials was 4 h to ensure strong signals in FTIR, while the AFM samples were reacted for 30 min to maintain visibility of the underlying PC nanosheet surface.

Discussion

The combination of spectroscopic and microscopic characterization methods here show the successful covalent functionalization of layered chalcogenide materials. FTIR...
spectroscopy reveals the successful attachment of nitrophenyl groups on TMDCs and PCs, particularly with the presence of the vibrations from the N–O, C=C, C–S, and C=Se bonds. Similarly from XPS data on MoS$_2$ and MoSe$_2$, we observe peaks consistent with successful covalent functionalization with the nitrophenyl groups. The TMDC and PC materials do not undergo any significant changes to their intrinsic crystal structures as elucidated by Raman spectroscopy. AFM and TEM imaging show the changes in morphology of the TMDCs and PCs upon functionalization. AFM imaging in particular clearly reveals the formation of small protrusions on the surfaces of all the mechanically exfoliated TMDCs and PCs, consistent with our previous observations for the functionalization of MoS$_2$. These protrusions have a similar height, and are attributed to the nitrophenyl groups attached to the basal planes of the layered chalcogenides. TEM imaging shows the nanosheets from liquid phase dispersion remain well-dispersed and stable upon functionalization, and with some low density features such as particles and overlayers that may correspond to the organic material covalently attached to the PCs. The functionalized materials also remain stable in aqueous dispersions, without noticeable clumping or precipitation.

The proposed reaction mechanism for these materials is briefly discussed here. In our earlier work in Chu et al., we showed for MoS$_2$ via DFT calculations and experiments using Ar$^+$ ions to introduce point defects imaged by STM that the functionalization reaction does depend on the presence of existing defects to initiate the reaction. Thus, an otherwise perfect crystal can be fully functionalized with just one initial defect, with the reaction propagating across the surface in a chain-like morphology. Our evidence from Raman, FTIR and AFM imaging suggests that a similar effect may be occurring for the new materials compositions in the current study. That is, the initial layered chalcogenide materials are nearly perfect based on their Raman spectra and the functionalization reaction proceeds by initiating at defects and edges and progresses in chain-like formations which can be seen in AFM images.

This functionalization scheme with diazonium salts is thus compatible with both wafer-scale and solution-based processing of TMDCs and PCs, and can be extended to other chemistries that have been previously used with graphene and MoS$_2$ to build from the aryl diazonium salts to form composite structures with quantum dots, polymers, and proteins, and to induces changes to the electronic properties. We anticipate similar changes and applications will be possible for the TMDC and PCs. That is, we will be able to exploit the known chemistries that were developed for the earlier materials like graphene and apply them to the TMDCs and PCs.

Conclusions

In conclusion, the functionalization of several compositions of 2D layered chalcogens from the TMDC and PC families has been demonstrated using aryl diazonium chemistry. While our earlier work studied the functionalization of only MoS$_2$ in detail, the present work demonstrates that this chemistry can readily be expanded to many other 2D layered chalcogens, in both mechanically exfoliated flakes and liquid phase dispersions. Thus, we have established that the aryl diazonium chemistry is a generalizable, effective, and broadly applicable approach to covalent functionalization of a diverse range of several compositions of 2D layered chalcogenides. The functionalized materials are characterized by a combination of spectroscopic and microscopic methods to show the presence of nitrophenyl groups attached to the surfaces of the TMDC materials MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$, and the PC materials Bi$_2$S$_3$ and Sb$_2$S$_3$. This work provides a valuable chemical tool for the modification and application of layered chalcogenides, and opens the door to further chemistries that will expand the functionalities of these low-dimensional materials.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

We acknowledge the use of facilities within the Eyring Materials Center at Arizona State University, supported in part by NSF grant ECCS-1542160. We also thank Prof. Hao Yan for use of his AFM and Raman spectroscopy systems. We also acknowledge support from NSF grants DMR-1610153 and EEC-1449500.

References

