Rotational superstructure in van der Waals heterostructure of self-assembled C$_{60}$ monolayer on the WSe$_2$ surface†

Elton J. G. Santos, Declan Scullion, Ximo S. Chu, Duo O. Li, Nathan P. Guisinger and Qing Hua Wang

Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C$_{60}$ molecules self-assembled on the surface of WSe$_2$ in well-ordered arrays with large grain sizes (∼5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure in the C$_{60}$ monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. This rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.

Introduction

The intense development of two-dimensional (2D) materials in recent years has expanded into the study of heterostructures formed using 2D layers and other materials. Heterostructures of different materials held together by van der Waals (vdW) forces allow materials of diverse compositions, structures, and properties to be combined, resulting in engineered materials with properties that are combinations of the components' properties, as well as newly emergent behaviours at the interfaces. Such heterostructures have been demonstrated using stacks of 2D layered materials and 2D materials combined with nanostructures of other dimensionalities and with organic crystals. The atomic flatness and lack of dangling bonds at the surface of 2D layered materials like graphene, boron nitride, and the transition metal dichalcogenides (TMDCs) allow them to form non-covalent interactions with a wide range of materials without the requirements for lattice matching that covalently bonded systems would have. Heterostructures of 2D layers can be achieved by physically stacking different sheets together or by epitaxial growth of subsequent 2D materials. At the interfaces between disparate materials, effects like charge transfer, tunneling, disorder, and impurity states can influence the electronic and optical behaviours. The careful combination of materials has resulted in new developments in performance and properties in devices like transistors, solar cells, and light emitting diodes.

The vdW heterostructures formed by organic crystals on 2D layered materials generally take advantage of the atomically flat and chemically inert surfaces to template self-assembly of the molecule units into ordered arrangements. Organic molecules that are often used in organic electronics, which typically have conjugated π-electron systems for better intermolecular conduction, have improved stacking and ordering when they are assembled on 2D materials. This has resulted
in devices with significant increases in carrier mobility in field-effect transistors5,19,20 and increased charge separation in photovoltaics.21 There are also promising opportunities for organic/2D vdW heterostructures to be used in flexible electronics.22–24 The synergy between the mechanical robustness of the 2D layers and their diverse available electronic properties, ranging from semi-metals (e.g. graphene, silicene, germanene) to semiconductors (e.g. transition metal dichalcogenides (TMDCs)),25 combined with the chemical tunability of the molecules can open the door for further design rules based on organic/vdW heterostructures. There is a need to develop a fundamental understanding of how molecular processes happening at the early stage of the crystallization of organic molecules on 2D crystals drive the system to specific epitaxial relationships11 and unique interfacial properties such as polymorphism.12 Moreover, the control of two-dimensional self-assembly of a single layer of molecules on layered materials in terms of molecular ordering, alignment, and crystallinity can result in emergent behavior and exciting new physics. Therefore, it is essential to achieve a deep understanding of the basic physical and chemical phenomena that rule highly crystalline architectures involving crystals of organic molecules and 2D materials in potential device platforms.

Here we report the growth of high quality self-assembled monolayers of C\textsubscript{60} on WSe\textsubscript{2} as an example of a weakly interacting organic/2D vdW heterostructure system. C\textsubscript{60} has been extensively used in the organic electronics field, and WSe\textsubscript{2} is an important semiconducting 2D material. We study the interfacial properties of this system using complementary methods of high resolution scanning tunneling microscopy (STM) and \textit{ab initio} density functional theory including vdW interactions. C\textsubscript{60} plays an important role as an acceptor in organic photovoltaics (OPVs)26,27 due to its high electron affinity for charge harvesting processes, and is expected to be similarly useful in hybrid 2D/organic optoelectronics.7,8 The interfacial interaction of C\textsubscript{60} with other 2D TMDCs has been shown to result in doping, with p-doping occurring for WSe\textsubscript{2} in particular,29 and with graphene has led to charge transfer and increased carrier mobility.30 While the self-assembly of C\textsubscript{60} molecules on metal surfaces like Cu,31–34 Au,32,35–42 and Ag32,35,40 has been widely studied by STM, their behavior on 2D material substrates is relatively unknown aside from some studies on graphene.15,43–46 The electronic and physical structure of the substrate has played an important role in these earlier works, and is also expected to be crucial in the case of WSe\textsubscript{2}. Generally, there is a higher degree of charge transfer between metals and molecules than between 2D materials and molecules.

Our STM images reveal that C\textsubscript{60} self-assembles into a close-packed monolayer on the surface of WSe\textsubscript{2} that extends uniformly in islands as large as \textasciitilde{5} \textmu m. The long-range ordering and large grains we observe contrast with much smaller grains and local ordering seen in previous studies. This C\textsubscript{60} monolayer exhibits four distinct intramolecular patterns in a 2 \times 2 superlattice, which is unusual for a monolayer assembly. High-throughput first-principles calculations show that only a few molecular configurations are energetically favorable for C\textsubscript{60} arranged on WSe\textsubscript{2}. The relative orientation of pentagons and hexagons between neighboring molecules drives the different arrangements through charge reordering connecting the C\textsubscript{60} molecules in a periodic network. Moreover, a systematic increase of the charge transfer between WSe\textsubscript{2} and C\textsubscript{60} is observed as a function of short rotations of C\textsubscript{60} mediated by vdW interactions. The increase in electron transfer goes along with the increase in stability of molecular configuration. This observation points to the active role of the molecule–substrate interactions in the stabilization of the interface. This also indicates that the presence of C\textsubscript{60} has only a mild effect on the physical and electronic properties of WSe\textsubscript{2} (e.g. electronic band gap, W–Se bond length, flatness), even though the molecules are electronically correlated. The creation of a clean interface between WSe\textsubscript{2} and C\textsubscript{60} resulting in a unique rotational superlattice is an intriguing step in the understanding and engineering of organic/2D vdW heterojunction devices.

Results and discussion

Formation of self-assembled C\textsubscript{60} monolayer

The assembly of C\textsubscript{60} on WSe\textsubscript{2} was experimentally implemented by in \textit{situ} thermal deposition of C\textsubscript{60} in an ultrahigh vacuum (UHV) system and characterized by scanning tunneling microscopy (STM). A single-crystal WSe\textsubscript{2} substrate was cleaved by scotch tape to expose a clean surface immediately before being introduced into the vacuum chamber for characterization and thermal deposition of C\textsubscript{60}. STM images of the clean WSe\textsubscript{2} surface are shown in Fig. 1a and b. The atomic structure of the WSe\textsubscript{2} lattice is clearly visible in both images, with a triangular symmetry due to the alternating positions of the Se atoms at the surface. Two point defects are seen in Fig. 1a, and some undulation of the surface in Fig. 1b. Fullerene molecules (C\textsubscript{60}) were thermally evaporated in \textit{in situ} onto the WSe\textsubscript{2} surface held at room temperature. The deposition time was calibrated such that we achieved sub-monolayer coverage of C\textsubscript{60} molecules. A schematic illustration of the C\textsubscript{60} molecules on top of WSe\textsubscript{2} is shown in Fig. 1c.

The sample was then cooled to 55 K for STM imaging, which showed that the fullerenes self-assemble into a close-packed hexagonal layer on WSe\textsubscript{2}, as seen in Fig. 1d. Because the sample is well below room temperature, the thermal motion of the molecules is minimized so that they can form a stable island with clear boundaries and long-range ordering. We note that bulk C\textsubscript{60} crystals, which pack in a face-centered cubic (fcc) lattice, have fewer rotational freedoms below 260 K, and have their orientational alignments frozen below 90 K.47,48

In our experiments, the substrate is at room temperature during thermal deposition of C\textsubscript{60}, allowing sufficient energy for the molecules to rotate and interact. The entire C\textsubscript{60}/WSe\textsubscript{2} system is then gradually cooled to 55 K, so that the optimal molecular configurations are stabilized before STM imaging.

The apparent height of the molecules is about 1 nm, as shown in the line profile labeled ‘1’. This height is similar to
that of a C$_{60}$ monolayer grown on NaCl crystals on Au(111), and is higher than the ~0.6–0.7 nm observed for C$_{60}$ on Au (111). The inset of Fig. 1d shows a 2D fast Fourier transform (FFT) of the C$_{60}$ region, with sharp points in a hexagonal pattern. The distance from the center to each point is approximately 1.0 nm$^{-1}$, corresponding to a periodicity of approximately 1.0 nm between molecules. This close-packed arrangement of the C$_{60}$ on WSe$_2$ is similar to its arrangement on other substrates such as graphene, Au, and Cu. It is also similar to the (111) cut through the bulk fcc C$_{60}$ crystal. In contrast, on reactive surfaces with dangling bonds such as Si and SiC, C$_{60}$ forms covalent bonds with the surface and does not form well-ordered layers, although multilayers of C$_{60}$ can form ordered lattices.

We observe large islands of C$_{60}$ (Fig. 1e) with dimensions up to ~5 µm. In contrast, molecular islands of C$_{60}$ on other substrates in the literature tend to be less than 100 nm in diameter. We observe some instances of molecules freely moving across the WSe$_2$ surface with the same apparent 1 nm height, such as the ones in the line profile labeled ‘2’.
Fig. 1f, confirming that our molecular islands are indeed monolayers of C₆₀ rather than bilayers. Line profile ‘3’ is taken at the edge of a molecular island.

In the high-resolution STM images of Fig. 2, the individual C₆₀ molecules appear to have submolecular structure, relating to the complex shape of the electronic orbitals in the molecule. The distance between adjacent C₆₀ molecules is approximately 1.0 nm (see line profile in ESI, Fig. S3†). We can identify four individual configurations of C₆₀, as highlighted by the circles labeled i, ii, iii, and iv in Fig. 2a. Each of these molecules is enlarged and cropped in Fig. 2b to more clearly show their distinct appearances. Since sample bias is +2.0 V in these images, these orbitals are likely to correspond to empty states (lowest unoccupied molecular orbitals, LUMO).

To understand the variations of the appearance of each C₆₀ molecule on WSe₂, we have performed first-principles density functional theory (DFT) calculations taking into consideration van der Waals (vdW) dispersion forces (see Methods section and ESI† for details). As described below in detail, we can identify the most likely interface geometry as indicated in each simulated STM image in Fig. 2b. We have simulated the STM images for more than ten different configurations of C₆₀ on top of WSe₂ (see Fig. S1 in ESI†), with their energies shown in Fig. 3 as discussed in more detail below. These configurations can be organized in three different sets of symmetries as described in terms of observed rotational symmetry of the orbital lobes, e.g. 2-, 3- and 5-fold. Each interfacial molecule seems to follow these symmetry rules even at the limit of full surface coverage. Indeed, looking closely at this limit we notice that these orbital appearances also form a 2 × 2 superlattice, as highlighted in Fig. 2c. Each of the appearances i–iv is highlighted in each panel, with the circles indicating the repeated molecules. It is clear that each molecular appearance arises in the self-assembled monolayer of C₆₀ every two molecules (Fig. 2c, panel i) to form a hexagonal pattern. In this 2 × 2 superlattice the distance between nearest neighboring mole-

Fig. 2 Molecular orientation superlattice of C₆₀ on WSe₂. (a) STM image of self-assembled monolayer of C₆₀ molecules with submolecular resolution showing shapes of orbitals. Since the sample bias is +2.0 V, these are likely empty states (LUMO). The molecules are in a close-packed hexagonal arrangement. Four different orbital appearances are highlighted in the different circles, labeled i, ii, iii, iv, and are potentially attributed to different molecular orientations on the substrate surface. (b) Enlarged and cropped images of the four circled molecules from panel (a), showing their distinct appearances. Simulated STM images in 2D and 3D views are shown beside each panel with the corresponding interface geometries. The dominant symmetry (2-, 3-fold) at each image is highlighted with green-outlines on the simulations. (c) The STM image from panel (a) is repeated here, with each of the four orbital appearances highlighted. They form a 2 × 2 superlattice arrangement as marked in panel i. Imaging conditions: 2.0 V sample bias, 0.2 nA tunneling current setpoint, 55 K sample temperature.
cules is 9.89 Å, which is close to the vdW distance in C\textsubscript{60} bulk crystals.54 We emphasize here that this 2 × 2 superlattice is observed in a monolayer of C\textsubscript{60}, while previous reports of orientational superlattices in C\textsubscript{60} have been in bilayers on Au (111),42 multilayers on Cu(111),55 bulk C\textsubscript{60} crystals,53 multilayers on Ag(111) with some local ordering,56 and bilayers and multilayers on NaCl/Au(111).38 There have also been superstructures observed by STM for C\textsubscript{60} on epitaxial graphene due to electronic Moiré patterns with either the Ru(0001) or SiC (0001) substrates rather than due to molecular rotations.15,43

Configurations and rotations of C\textsubscript{60} on WSe\textsubscript{2}

To determine the effect of the interactions on the observed molecular patterns, we used \textit{ab initio} calculations at two different levels of theory with van der Waals interactions (DRSLL functional) and without (GGA, PBE functional). (See
Methods section below and ESI† for details.) We have initially considered a number of C$_{60}$ molecular configurations on the WSe$_2$ surface and calculated their electronic and energetic structures for a freestanding layer. A computational high-throughput screening taking into account the orientation of C atoms in the C$_{60}$ molecule in pentagon, hexagon, dimer and apex positions, relative to the WSe$_2$ structure, resulted in sixteen different arrangements as shown in Fig. 3. We clearly observed the role of vdW dispersion forces in the stabilization of the C$_{60}$/WSe$_2$ interfaces as we compare Fig. 3a and b. There is an enhancement of the stability in the vdW simulations as high as one order of magnitude relative to GGA results. The energy difference between the lowest and the highest stable configurations reaches 0.10 eV and 0.30 eV in GGA and vdW, respectively. We also observed that this increase in stability among the different configurations originates as C$_{60}$ molecules partially rotate on the WSe$_2$ surface, with the most stable configuration being the one where a hexagonal ring is on top of a Se atom (Hexagon/Top Se, top right of Fig. 3). This effect also influences the amount of charge transferred from WSe$_2$ towards C$_{60}$, which follows the vdW stability. As the interactions increase with more stability, the molecular orbitals of the C$_{60}$ overlap more with the states at the surface, which increases the amount of charge transfer towards C$_{60}$. That is, the more stable the configuration the more electron transfer. This is in accordance with the good acceptor characteristics of C$_{60}$ due to its high electron affinity, which is advantageous in organic solar cells.\(^{57,58}\) This also agrees with the spectroscopic observation of C$_{60}$ causing p-doping in WSe$_2$.\(^{29}\)

We now address the different relative orientations between the molecules in the 2 × 2 superlattice measured above (Fig. 2). It is well established that C$_{60}$ molecules tend to perform rotations along some preferential directions when physisorbed on top of weakly interacting surfaces.\(^{59-65}\) The strength of molecule–surface interactions and molecule–molecule forces determine the angular orientations of C$_{60}$ which can vary as a function of temperature. When C$_{60}$ is deposited on WSe$_2$ surfaces, the molecules will have enough energy to perform molecular spinning, translations and some vibrations, e.g. breathing modes, as simulated using \textit{ab initio} molecular dynamics at 55 K and 355 K (see Fig. 4, and movies in ESI†). Most of the molecules perform short rotations in the first 1.0 ps, assuming different configurations relative to each other at later times. A constant spinning rate of all molecules has not been observed simultaneously for any initial configuration. Fig. 4a shows the initial and final configurations after the system has time evolved for 10.5 ps. The relative positions of the atoms of the C$_{60}$ molecules are highlighted in blue and yellow to follow the evolution with time of the hexagonal and pentagonal rings, respectively, in each molecule. Interestingly, the molecular dynamics indicates that some molecules have their movement coupled to the nearest neighbors through interactions of double bonds localized between two hexagons (6:6) on one molecule and pentagonal faces of an adjacent C$_{60}$ molecule (see movie 1 in ESI†). Such 6:6 bonds have a higher electronic density than bonds localized between a hexagon and pentagon (6:5) because of the local aromatic character.\(^{54,66}\) This serves as an efficient point of interactions between the molecules.

Electronic structure of hybrid C$_{60}$/WSe$_2$ system

The energetic barriers for rotation between adjacent C$_{60}$ molecules as a function of rotation angle \(\theta\) (Fig. 4b) show that the most stable positions occur at 0° and 60°, which are angles where a 6:6 bond faces a pentagon (Fig. 4c). In this situation the high charge density of \(p_6\) orbitals in 6:6 bonds overlap electron-poor pentagonal zones, which minimizes Coulomb interactions between molecules, therefore reducing the total energy of the system. The tendency for electron-rich and electron-poor regions of adjacent C$_{60}$ molecules to associate has also been seen in previous reports.\(^{38}\) The wavefunctions of the conduction band at different rotational angles \(\theta\) show the different orbital overlaps between the molecules (Fig. 4d and e). In all configurations a substantial interaction is observed, with \(\theta = 30^\circ\) corresponding to two 6:6 bonds facing each other as the strongest (Fig. 4e). This configuration raises the energy by \(\sim 334\) meV (Fig. 4b), but provided an efficient coupling between C$_{60}$ molecules as observed in the substantial charge density present throughout the entire system. Repulsive forces based on the short-range Pauli exclusion regime drive the system to short rotations where the strong overlap in wavefunctions between adjacent molecules can be tuned. It is noted that the charge density localized in the inter-molecule space clearly modifies its shape at different values of \(\theta\), being more orbital-localized at low interactions energies (Fig. 4d), rather than spread between different molecules at high energy cost (Fig. 4e).

Furthermore, some meta-stable positions are also observed around \(\theta = 15^\circ\) and \(\theta = 45^\circ\), which are due to the stabilization of the charge arrangement between different C$_{60}$ bonds; that is, 6:5 bonds and apex atoms in the C$_{60}$. This suggests the directional nature of the C$_{60}$–C$_{60}$ interactions in the monolayer which acts as a driving force for organization and self-assembly. Indeed, an estimation of the molecule–molecule interactions in the periodic two-dimensional C$_{60}$ monolayer without the WSe$_2$ gives a binding energy of 0.70 eV (\(\theta = 0\)), which is slightly smaller than those calculated between substrate and molecule at different adsorption configurations (Fig. 3b) but still in the same energy range. This indicates that some competition between molecule–molecule and molecule–surface interactions takes place at different values of \(\theta\). In comparison to experiments performed on other surfaces,\(^{42,55}\) where there are stronger interactions between C$_{60}$ molecules and substrates, superlattices were only observed in bilayer islands likely due to the decoupling of the second layer from the substrate. In our experiments, the superlattice is observed in the C$_{60}$ monolayer. If the balance between repulsion and attraction within the C$_{60}$ monolayer is altered due to high molecule–surface interactions, similar patterns would not be observed. We emphasize that here in the case of WSe$_2$ surfaces, the interactions are at just the right amount to permit...
the C$_{60}$ molecules to spin and still be chemically coupled to the substrate.

The resulting electronic structure of the combined C$_{60}$/WSe$_2$ system after 10.5 ps of time evolution is shown in Fig. 5. The geometric configuration of the system is the one shown in Fig. 4a. A band gap of about 0.50 eV is clearly observed in the C$_{60}$/WSe$_2$ system, with contributions from conduction band C$_{60}$ states (Fig. 5a). The band gap of the C$_{60}$ layer alone is close to 0.7 eV, which is considerably smaller than that of C$_{60}$ packed in an FCC solid and smaller than the HOMO–LUMO gap of the isolated molecule,54 but is close to what was measured for C$_{60}$ in a double barrier tunnel junction geometry.67 This suggests that some delocalization of the C$_{60}$ states throughout the entire system could be a key factor. Indeed, the real part of the fullerene wave functions, Re[ψ$_{n_k}^C$] (n = 4,7), selected at the conduction band displayed such behavior (Fig. 5b and c). There is a remarkable electronic interaction between the C$_{60}$ molecules which can be appreciated via the

Fig. 4 Molecular coupling in C$_{60}$ molecules. (a) Ab initio molecular dynamics simulations including vdW dispersion forces for C$_{60}$ molecules on WSe$_2$. Atoms highlighted in blue (involving hexagons) and yellow (involving pentagons) tracked down the evolution of the molecules during the molecular dynamics where most of the interactions between the molecules happen. The system is set at T = 355 K, and time-evolved for t = 10.5 ps. (b) Rotational barriers per interfacial molecule for C$_{60}$ at the most stable configuration of Fig. 3b (hexagon/top Se). (c) Schematic of the unit cell and the definition of the rotational angle θ utilized in (b) relative to the next-neighbor molecules. The rotational angle θ is defined relative to the equator of the C$_{60}$ molecule where spinning occurs along its center. Different angles correspond to distinct relative orientations between the C$_{60}$'s: θ = 0° (pentagon/6:6 configuration), θ = 10° (6:5/6:5 configuration), θ = 30° (6:6/6:6 configuration). Similar orientations are observed for θ > 30° because of the 3-fold symmetry. (d and e) Cross section of the real part of the wave functions corresponding to the bottom of the conduction band $\psi_{C}^{n_k}$ at θ = 0° and θ = 30°, respectively. Positive and negative values are shown in the color gradient map at the right of each panel. C atoms are shown in dark gray.
lateral extension of the molecular orbital linking the molecules in different spatial distributions. In fact, such orbital characteristics follow a molecular pattern that resembles the one observed in our STM measurements (Fig. 2). The spatial character of the wave function changes between one eigenvalue to another, not only for $n = 4, 7$, but the orbital symmetry involved at each molecule is kept the same (see Fig. S2†). In particular, all the eigenstates marked in Fig. 5a at the bottom of the conduction band in the range of 0.45 eV to 1.12 eV inside of the band gap of the WSe$_2$ surface have similar electronic characteristics. Integrating these states through:

$$\rho(r, E) = \sum_{E_n} |\psi_{nk}(r, E)|^2 dE$$

(1)

gives their spatial distribution in terms of the local density of states as shown in Fig. 5d. The quantity $\rho(r, E)$ reproduces closely the main features observed in the measured STM images (Fig. 2), where every other molecule has the same molecular orbital distribution following a 2 × 2 superlattice. The precise combination of the C$_{60}$ molecules in the supercell utilized can drive the system to different orientationally ordered C$_{60}$ domains. However, once the main interactions between molecules and molecule–substrate take place the rotational superstructure is formed, even though the local molecular configuration of the individual C$_{60}$ molecules might show differences. This is related with the dynamical aspect of the molecule itself associated with the collective character of the self-assembly.

Conclusion

In conclusion, our findings reveal fundamental knowledge of the physical and chemical phenomena of van der Waals heterostructures using self-assembled organic molecules and inorganic 2D materials, which have some subtle but important differences from self-assembly on metal surfaces. C$_{60}$/WSe$_2$ constitutes an archetypal vdW heterostructure with exciting possibilities for electronic devices based on atomically thin films. We have shown the self-assembly of C$_{60}$ molecules on WSe$_2$ layers via high-resolution STM and ab initio DFT includ-
ing vdW interactions. After deposition, the molecules form a monolayer that extends uniformly over WSe$_2$ with large grain sizes (~5 μm). The interplay and balance between adsorbate–adsorbate and adsorbate–substrate interactions leads to the formation of rotational arrays of self-assembled 2 × 2 molecules. Using the state-of-the-art vdW ab initio calculations, we demonstrate the critical role of the relative orientation between specific bonds in the C$_{60}$ in the determination of the spatial superlattice. Through the minimization of the intermolecule Coulomb interactions, the C$_{60}$ molecules tend to be electronically coupled with long range orientational ordering, which is reflected in the high crystallinity of C$_{60}$ on WSe$_2$. The electronic structure of the hybrid system shows spatial delocalization of molecular orbitals throughout the 2 × 2 superlattice. The present study shows a mechanism of collective molecular restructuring based on the balance of non-covalent molecule–molecule and molecule–substrate interactions. These results may have implications in the geometrical control of the self-assembly of surface molecules for various electronic and optoelectronic applications based on vdW heterostructures of 2D materials. This highlights the advantages of organic vdW heterostructures over commonly used materials to achieve high-performance organic electronic devices, where such control of molecule assembly is not achievable. Future theoretical and experimental efforts will explore to what extent the surface-driven molecular self-assembly mechanism found here will influence the carrier mobility of the organic molecules, which is critical for device platforms.

Methods

Fabrication of the WSe$_2$/C$_{60}$ heterostructure and measurements

Ultrahigh vacuum scanning tunneling microscopy (UHV STM) imaging was conducted in an Omicron VT STM/AFM system. The WSe$_2$ crystal (NanoScience Instruments) was cleaved by peeling away the top layer using adhesive tape in air, and then was immediately loaded into the vacuum system. The C$_{60}$ molecules (Sigma Aldrich, sublimed, 99.9%) were deposited in vacuum using a molecular beam thermal evaporator (Dodecon Nanotechnology GmbH) onto the WSe$_2$ sample held at room temperature. STM probes were electrochemically etched W wire. The WSe$_2$ sample with C$_{60}$ monolayer was cooled to 55 K for all imaging. The STM electronics and software were from Nanonis, and the resulting images were processed with the Gwyddion software package. Image processing included low-pass noise removal and background flattening.

vdW ab initio calculations

Calculations were based on ab initio density functional theory using the SIESTA method and the VASP code. The generalized gradient approximation along with the DRSLL functional was used in both methods, together with a double-zeta polarized basis set in SIESTA, and a well-converged plane-wave cutoff of 500 eV in VASP. We used a Fermi–Dirac distribution with an electronic temperature of $k_B T = 20$ meV. Additional details are provided in the ESI.†

Author contributions

Q. H. W. and E. J. G. S. designed the project, analyzed the data, and wrote the manuscript. E. J. G. S. and D. S. conducted the DFT calculations. Q. H. W., N. P. G., X. S. C., and D. O. L. conducted the STM experiments.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. E. J. G. S. acknowledges the use of computational resources from the UK national high performance computing service, ARCHER, for which access was obtained via the UKCP consortium and funded by EPSRC grant ref EP/K013564/1; and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grants number TG-DMR120049 and TG-DMR150017. The Queen’s Fellow Award through the startup grant number M8407MPH and the Energy Sustainable PRP (QUB) are also acknowledged. D. S. acknowledges the EPSRC studentship. Q. H. W. acknowledges support from Arizona State University startup funds.

References

